Большинство современных персональных компьютеров являются. Персональный компьютер: определение и классификация, принцип открытой архитектуры, понятие совместимости компьютеров, базовая конфигурация ПК, основные и дополнительные устройства. Карманные компь

4.Тенденции развития вычислительной техники

По мнению специалистов, в первом десятилетии XXI в. будут повышаться значимость программного обеспечения, возрастание проблем его совместимости и обеспечения безопасности.

Среди операционных систем дальнейшее развитие получат системы Linux и Windows. С точки зрения конечного пользователя, уже в ближайшие годы должны произойти серьезные изменения в стиле его общения с компьютером. Во-первых, будет шире использоваться графический ввод данных, в том числе в режиме автоматического распознавания рукописного ввода. Во-вторых, будет использоваться голосовой ввод - сначала для управления командами, а потом будет осваиваться и автоматическая оцифровка речи. Для решения вышеуказанных задач будут разрабатываться соответствующие внешние устройства.

Огромное значение в будущем будут иметь работы в области интеллектуальной обработки неструктурированных данных, в первую очередь текстов, а затем графики, звука, видео.

Одним из наиболее перспективных направлений развития вычислительной техники является реализация концепции сетевых вычислений, использующая идею привлечения для вычислений свободных ресурсов компьютеров. Эта концепция получила название Grid и включает в себя пять ключевых пунктов:

Применение открытых стандартов;

Объединение разнородных систем;

Совместное использование данных;

Динамическое выделение ресурсов;

Объединение вычислительных сетей множества предприятий и организаций.

Развитие ЭВМ будет идти по пути создания оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Дальнейшее развитие получат переносные персональные компьютеры с беспроводным подключением к глобальной сети Интернет.

Следует отметить, что развитие вычислительной техники всецело зависит от тенденций развития мировой экономической системы.

Лекция № 6 История развития вычислительной техники

Лекция № 3 Поколения и классификация ЭВМ

1.Поколения вычислительной техники

Выделяют пять поколений ЭВМ.

Первое поколение (1945-1954) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и создавались с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали отдельных зданий.

Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до настоящего времени лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика - наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

Во втором поколении (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и барабаны - прототипы современных жестких дисков. Все это позволило сократить габариты и стоимость компьютеров, которые тогда впервые стали производиться на продажу.

Но главные достижения этой эпохи относятся к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Два этих важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризировать свою бухгалтерию, предвосхищая этот процесс на двадцать лет.

В третьем поколении (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В то же время появилась полупроводниковая память, которая и до настоящего времени используется в персональных компьютерах в качестве оперативной.

В те годы производство компьютеров приняло промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 1960-х гг. появились первые миникомпьютеры - маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Мини-компьютеры были первым шагом на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 1970-х гг.

Между тем количество элементов и соединений, умещающихся в одной микросхеме, постоянно росло, и в 1970-е гг. интегральные схемы содержали уже тысячи транзисторов.

В 1971 г. фирма Intel выпустила первый микропроцессор, который предназначался для только появившихся настольных калькуляторов. Это изобретение произвело в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера.

На рубеже 1960 -70-х гг. (1969) появилась первая глобальная компьютерная сеть ARPA, прототип современной сети Интернет. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое главенствующее положение.

Четвертое поколение (1975 -1985) характеризуется небольшим количеством принципиальных новаций в компьютерной науке. Прогресс шел в основном по пути развития того, что уже изобретено и придумано, прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Самая главная новация четвертого поколения - это появление в начале 1980-х гг. персональных компьютеров. Благодаря им вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и мини-компьютеры по-прежнему по вычислительной мощности отстают от солидных машин, большая часть новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана с появлением и развитием именно этой техники.

Большие компьютеры и суперкомпьютеры, конечно же, продолжают развиваться. Но теперь они уже не доминируют в компьютерном мире, как было раньше.

Некоторые характеристики вычислительной техники четырех поколений приведены в

Характеристика

Положение

первое

второе

третье

четвёртое

Основной элемент

Электронная лампа

Транзистор

Интегральная схема

Большая интегральная схема

Количество ЭВМ в мире, шт.

Десятки тысяч

Миллионы

Размер ЭВМ

Значительно меньший

Десятки тысяч

Микро ЭВМ

Быстродействие (условное) операций/ с

Несколько единиц

Несколько десятков единиц

Несколько тысяч единиц

Несколько десятков тысяч единиц

Носитель информации

Перфокарта, перфолента

Магнитная лента

Гибкий диск

Пятое поколение (1986 г. до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий должны удовлетворять следующим качественно новым функциональным требованиям:

    обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков;

    обеспечить возможность обучаемости, ассоциативных построений и логических выводов;

    упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

    улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

    обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.

В настоящее время ведутся интенсивные работы по созданию оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

2.Классификация электронно-вычислительных машин

ЭВМ можно классифицировать по ряду признаков:

    По принципу действия.

    По назначению ЭВМ.

    По размерам и функциональным возможностям.

По принципу действия ЭВМ :

    АВМ – аналоговые вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);

    ЦВМ – цифровые вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме;

    ГВМ – гибридные вычислительные машины комбинированного действия, работают с информацией, представленной как в цифровой, так и аналоговой форме. ГВМ совмещают в себе достоинства АВМ и ЦВМ. Их целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

По назначению ЭВМ :

    универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных;

    проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами;

    специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций.

По размерам и функциональным :

    сверхмалые (микро ЭВМ ) обязаны своим появлением изобретению микропроцессора, наличие которого первоначально служило определяющим признаком микро ЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ;

    малые (мини-ЭВМ) используются чаще всего для управления технологическими процессами;

    большие ЭВМ чаще всего называют мэйнфреймами (mainframe). Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами;

    сверхбольшие (суперЭВМ) – мощные многопроцессорные вычислительные машины быстродействием десятки миллиардов операций в секунду и объемом оперативной памяти десятки Гбайт.

3.Принципы строения и функционирования ЭВМ Джона фон Неймана

Большинство современных ЭВМ функционирует на основе принципов, сформулированных в 1945 г. американским ученым венгерского происхождения Джоном фон Нейманом.

1. Принцип двоичного кодирования . Согласно этому, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов).

2. Принцип программного управления . Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

3. Принцип однородности памяти . Программы и данные хранятся в одной и той же памяти, поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

4. Принцип адресности . Структурно основная память состоит из пронумерованных ячеек, любая из которых доступна процессору в любой момент времени.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков:

1) устройство ввода/вывода информации;

2) память ЭВМ;

3) процессор, включающее устройство управления (УУ) и арифметико-логическое устройство (АЛУ).

В ходе работы ЭВМ информация через устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку.

Память ЭВМ состоит из двух видов памяти: внутренней (оперативной ) и внешней (долговременной ).

Оперативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией. Внешняя память – это различные магнитные носители (ленты, диски), оптические диски.

За прошедшие десятилетия процесс совершенствования ЭВМ шел в рамках приведенной обобщенной структуры.

4.Классификация персональных компьютеров

Как указывалось выше, персональный компьютер (ПК) представляет собой универсальную однопользовательскую микро ЭВМ.

Персональный компьютер в первую очередь является общедоступной ЭВМ и обладает определенной универсальностью.

Для удовлетворения потребностей пользователя ПК должен обладать следующими свойствами:

    иметь относительно небольшую стоимость, быть доступным для индивидуального покупателя;

    обеспечивать автономность эксплуатации без специальных требований к условиям окружающей среды;

    обеспечивать гибкость архитектуры, делающей возможным ее перестройку для разнообразных применений в сфере управления, науки, образования, в быту;

    операционная система и программное обеспечение должны быть достаточно простыми, чтобы с ПК мог работать пользователь без профессиональной специальной подготовки;

    иметь высокую надежность работы (более 5000 ч наработки на отказ).

В соответствии с международным стандартом-спецификацией РС99 ПК по назначению делятся на следующие категории:

    массовый ПК (Consumer);

    деловой ПК (Office PC);

    портативный ПК (Mobile PC);

    рабочая станция (Workstation PC);

    развлекательный ПК (Entertainment PC).

Большинство ПК, имеющихся в настоящее время на рынке, являются массовыми. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, т.е. средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК – к средствам воспроизведения звука и видео.

По поколениям ПК делятся:

    на ПК 1-го поколения, используют 8-битные микропроцессоры;

    ПК 2-го поколения, используют 16-битные микропроцессоры;

    ПК 3-го поколения, используют 32-битные микропроцессоры;

    ПК 4-го поколения, используют 64-битные микропроцессоры.

ПК можно также разделить на две большие группы: стационарные и переносные. К переносным компьютерам относятся ноутбуки, электронные записные книжки, секретари и блокноты.

Основу ПК составляет системный блок, в котором размещены:

    микропроцессор (МП);

    блок оперативного запоминающего устройства (ОЗУ);

    постоянного запоминающего устройства (ПЗУ); долговременной памяти на жёстком магнитном диске (Винчестер);

    устройства для запуска компакт-дисков (CD) и дискет (НГМД).

Там же находятся платы: сетевая, видеопамяти, обработки звука, модем (модулятор-демодулятор), интерфейсные платы, обслуживающие устройства ввода-вывода: клавиатуры, дисплея, "мыши", принтера и др.

Все функциональные узлы ПК связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.Микропроцессор служит для обработки информации: он выбирает команды из внутренней памяти (ОЗУ или ПЗУ), расшифровывает и затем исполняет их, производя арифметические и логические операции. Получает данные из устройства ввода и посылает результаты на устройства вывода. Он вырабатывает также сигналы управления и синхронизации для согласованной работы его внутренних узлов, контролирует работу системной магистрали и всех периферийных устройств. Упрощённая схема микропроцессора представлена на нижней схеме (выделена штриховой линией с надписью ЦП). В его состав входят: арифметико-логическое устройство (АЛУ), выполняющее арифметические и логические операции над двоичными числами; блок регистров общего назначения (РОН), используемых для временного хранения обрабатываемой информации (R0 - R5), указателя стека (R6) и счётчика команд (R7); устройство управления (УУ), определяющее порядок работы всех узлов микропроцессора. Одной из важнейших характеристик микропроцессора является его разрядность, определяемая числом разрядов АЛУ и РОН. Современные микропроцессоры имеют 16- , 32- и 64-разрядную длину двоичного числа, а также до 200 и более различных внутренних команд.

11. Основными функциональными характеристиками персонального компьютера являются:

1. производительность, быстродействие, тактовая частота. Производительность современных ЭВМ измеряют обычно в миллионах операций в секунду;

2. разрядность микропроцессора и кодовых шин интерфейса. Разрядность - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК;

3. типы системного и локальных интерфейсов. Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды;

4. емкость оперативной памяти. Емкость оперативной памяти измеряется обычно в Мбайтах. Многие современные прикладные программы с оперативной памятью, имеющей емкость меньше 16 Мбайт, просто не работают либо работают, но очень медленно;

5. емкость накопителя на жестких магнитных дисках (винчестера) . Емкость винчестера измеряется обычно в Гбайтах;

6. тип и емкость накопителей на гибких магнитных дисках. Сейчас применяются накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 дюйма, имеющие стандартную емкость 1,44 Мб;

7. наличие, виды и емкость кэш-памяти. Кэш-память - это буферная, недоступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Наличие кэш-памяти емкостью 256 Кбайт увеличивает производительность персонального компьютера примерно на 20%;

8. тип видеомонитора и видеоадаптера;

9. наличие и тип принтера;

10. наличие и тип накопителя на компакт дисках CD-ROM;

11. наличие и тип модема;

12. наличие и виды мультимедийных аудиовидео-средств;

13. имеющееся программное обеспечение и вид операционной системы;

14. аппаратная и программная совместимость с другими типами ЭВМ. Аппаратная и программная совместимость с другими типами ЭВМ означает возможность использования на компьютере, соответственно, тех же технических элементов и программного обеспечения, что и на других типах машин;

15. возможность работы в вычислительной сети;

16. возможность работы в многозадачном режиме. Многозадачный режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим) ;

17. надежность. Надежность - это способность системы выполнять полностью и правильно все заданные ей функции;

18. стоимость;

19. габаритами вес.

12 . Виды портативных персональных компьютеров . Сегодня на рынке существуют портативные системы трех основных категорий: laptop, notebook и subnotebook. Несколько в стороне стоят КПК (карманные персональные компьютеры. Определение таких систем не очень четкие, основаны они главным образом на размере и весе; эти характеристики имеют прямое отношение к возможностям системы, поскольку, чем больше корпус, тем более компонентов в него можно вложить.Поэтому неудивительно, что некоторые производители портативных компьютеров иногда "неверно называют" категории систем, выпускаемых - лэптоп называют ноутбуком или наоборот. Ниже рассмотрим все стандарты портативных систем.

Лэптоп . Так назывались первые портативные компьютеры. Сейчас лэптопами именуют самые портативные системы. Типичный ноутбук весит более 3 кг и имеет размер более 23 30 5 см. Появление на современном рынке экранов больших размеров привело к увеличению размеров (кроме высоты, которая в отдельных моделях уменьшилась) портативных компьютеров. Будучи когда-то наименьшими компьютерами, сейчас ноутбуки становятся суперсовременными машинами, по возможностям и производительности сравнимыми с настольными системами.Пример - портативный Pentium 4, собранный с использованием комплектующих обычных настольных компьютеров. Преимущества такой системы в уменьшении цены по сравнению с полностью функционально аналогичного ноутбука, повышения удобства в работе. Ограничения в использовании – условная мобильность, такая система более предназначена для максимального удобства рабочего стола менеджера.Во многих случаях ноутбуки представляются производителями как замена настольных систем, или как переносные мультимедийные системы для презентаций ("Дорожные системы"). Большие активно-матричные дисплеи с объемом оперативной памяти от 32 до 512 Мбайт, жесткие диски емкостью от 20 Гбайт и более, накопители CD-ROM и DVD, встроенные акустические системы, средства коммуникации и порты для подключения внешнего дисплея, накопителей и звуковых систем - вот те компоненты, которые включены в многих современных лэптоп-систем. Кроме того, некоторые "продвинутые" модели также содержат комбинированный дисковод DVD-CD/RW и устройство беспроводной связи Wi-Fi.Большинство лэптопов поставляются с стыковочным оборудованием, позволяет применять их в качестве "домашней базы" - подключаться к компьютерной сети и использовать полноразмерные монитор и клавиатуру. Для человека, постоянно разъезжает, это гораздо лучше, чем иметь отдельную настольную портативную систему, что требует постоянной синхронизации данных. Хотя, конечно, за все приходится платить: стоимость самых мощных лэптопов сейчас более чем вдвое превышает стоимость аналогичных настольных систем.

Нетбук . Целью разработчиков портативных систем этого типа были создание компьютера, по всем параметрам меньше, чем ноутбук. Нетбук весит 2-3 кг, имеет меньший, чем у ноутбука, дисплей с более низкой разрешающей способностью и мультимедиа-возможностями (но не стоит считать эти машины слабыми). Жесткие диски и память у многих из них никак не меньше, чем ноутбуки, а большинство даже содержат CD-ROM и звуковые адаптеры. Разработаны не как замена, а скорее как дополнение к настольной системы, нетбуки вряд ли поражают своими возможностями, но они полнофункциональными дорожными компьютерами. Для нетбуков существует большой выбор дополнительных устройств и аппаратных конфигураций, поскольку они предназначены для широкого круга пользователей - от профессионалов до торговых агентов, которые используют самый минимум функций.

Субноутбук . Субноутбук значительно меньше своих собратьев. Он прекрасно подойдет путешественнику, которому не нужны расширенные возможности больших и слишком тяжелых машин, но необходимая функциональность настольного компьютера в дороге и возможности подключения к офисной сети.В конструкции субноутбуков обычно отсутствует внутренний дисковод гибких дисков, но иногда есть разъем для подключения внешнего дисковода. Накопителей CD-ROM и других громоздких компонентов в нем также нет, однако есть сравнительно большой высококачественный дисплей, значительный дисковое пространство и полноразмерная (по стандартам портативных ПК) клавиатура для этих машин не редкость. Некоторые модели субноутбуков (например, IBM THINKPAD 570) оснащены специальным модулем, с помощью которого можно подключить "отсутствует оборудования ", например, накопитель CD-ROM или DVD.Существуют субноутбуки, предназначенные специально для "крутых" людей (Таких, как высший управленческий персонал), которые используют в основном электронную почту и средства планирования и при этом хотят иметь легкую, изящную и впечатляющую систему. Стоимость таких систем находится на уровне (Или выше) лэптопов. Примером может быть субноутбук Acer Pentium III (Частота процессора 1,13 МГц) или Acer Pentium IV (частота процессора 1,2 МГц) с объемом жесткого диска 20 ГБ приблизительным размерам 25 15 2 см.

Палмтопы . Эта категория появилась на рынке сравнительно недавно. Название этих компьютеров вполне соответствует их размерам - они могут поместиться на ладони. К этой категории портативных систем не относятся сетевые персональные помощники или системы под управлением Windows CE. Палмтопы – это полно функциональный компьютер с операционной системой как в настольных моделей. Клавиатура палмтопы зачастую представляет собой основной набор клавиш, причем меньшего размера. Поэтому такие компьютеры наилучшим подходят для отправки электронной почты или факса в пути, для решения других небольших задач.Типичным представителем палмтопы можно назвать серию компьютеров Libretto, выпускаемых компанией Toshiba (по более современной классификации их относят к субноутбуков). Такой компьютер весит около 700 граммов, имеет экран 8 дюймов, а в небольшую клавиатуру интегрирован устройство указания trakpoint. Такой палмтопы уступает по производительности другим типам портативных компьютеров, но имеет одно преимущество - на нем можно установить операционную систему Windows и все необходимые приложения.

Карманные ПК . Это компьютеры и органайзеры, которые могут разместиться управляемые системами Palm OC, Windows CE, Pocket PC, EPOC. Они могут быть клавиатурными (Handheld PC) и без клавиатурными (Palm size PC). Кроме того, существуют смартфоны - сочетание карманного компьютера и мобильного телефона. Такие компьютеры не являются полноценными в том смысле, что для обмена данным требуют подключения к стационарной машиной.Технологии мобильных компьютерных систем. Времени, когда слово "Портативный" означало "кейс с ручкой", портативные компьютеры, как и их настольные предшественники, очень изменились. Сегодняшние портативные системы могут конкурировать с настольными почти во всем. Многие компании предлагают их мобильным пользователям как основные компьютеры.

  • 1. Типы компьютеров
  • 3. Виды стационарных ПК
  • 4. Виды портативных ПК
  • 5. Ноутбуки
  • 6. Планшеты
  • 7. Карманные компьютеры и смартфоны
  • 8. Вычислительные серверы
  • 9. Суперкомпьютеры
  • 10. Другие виды

Современные компьютеры различаются по многим критериям: размерам, возможностям, а также по назначению. Прогресс движется семимильными шагами и сегодня на полках магазинов можно найти такую технику, которую еще недавно мы ассоциировали с далеким будущим. Классификация компьютеров и ее понимание помогут потребителю совершить максимально эффективную покупку, а игнорирование подобной информации приведет к необдуманным тратам, которые не вызовут ничего кроме разочарования.

Типы компьютеров

В чем же заключаются различия по типу компьютеров? Тип – это некоторая группа, обладающая схожими функциями, целями и задачами, а порой и внешним видом. Если, например, персональный компьютер – это тип, то ноутбуки или моноблоки – его виды. Несколько десятилетий назад классификация компьютеров включала в себя как современные цифровые, так и аналоговые машины, но последние канули в Лету, и мы здесь будем говорить только о цифровых устройствах.

Персональный компьютер

Это наиболее распространенный тип подобной техники, такой компьютер предполагает непосредственное взаимодействие с человеком напрямую и выдачу понятной последнему информации. Классификация персональных компьютеров в общем виде включает в себя стационарные и портативные устройства, о каждом из этих видов мы поговорим немного подробнее.

Виды стационарных ПК

Такой компьютер занимает постоянное место, например, компьютерный стол. Как правило, такие системы обладают большими вычислительными мощностями чем переносные гаджеты, ведь их не нужно переносить с места на место, и они могут себе позволить использовать более габаритные комплектующие, чья мощность выше. Выделим основные виды подобных устройств:


Виды портативных ПК

Портативный – он же переносной персональный компьютер, среди прочего имеет высокие требования к мобильности конструкции и ее весу, ведь мало кто захочет таскать за собой десятикилограммовое устройство. Такие девайсы способны работать в автономном режиме, а для его увеличения производители зачастую жертвуют производительностью системы. Этот вид ПК классифицируют следующим образом:

Ноутбуки

Это переносные компьютеры, оснащенные батареей, которая позволяет устройство работать без подключения к электрической сети. В одном корпусе такого гаджета одновременно находятся все необходимые элементы – монитор, клавиатура, процессор и прочая начинка.

Несмотря на то, что ноутбуки заметно компактнее и мобильнее стационарных компьютеров, они так же подразделяются между собой по весу и габаритам. Нетбуки – это компактные ноутбуки, которые приносят производительность в жертву легкости веса и упрощения мобильности, они отлично подходят для тех, кто любит работать не только за определенным рабочим местом, но и буквально где придется – в поезде, кафе или библиотеке.
Хотя ноутбуки не могут тягаться в производительности с десктопами, обладающими сопоставимой ценой, но для большинства функций их железа вполне хватает, а в последние годы все большую популярность стали завоевывать игровые ноутбуки, нафаршированные современнейшей начинкой, правда весят такие модели прилично.

Планшеты

Эти устройства являются чем-то средним между смартфонами и ноутбуками. Они зачастую обладают довольной большой диагональю экрана порядка 10 дюймов, но все же весят заметно меньше ноутбуков, а их производительности уже точно не хватит для современных компьютерных игр, хотя мобильные игрушки бывают не менее интересными и технологичными.
Такие устройства управляются посредством сенсорного дисплея, хотя такой форм-фактор как планшетный ноутбук тоже обладает полноценной клавиатурой. Основной задачей подобных гаджетов является веб-серфинг и просмотр видео-контента, но при необходимости с их помощью можно поработать в офисных программах, воспользоваться электронной почтой и многое другое.

Карманные компьютеры и смартфоны

Форм-фактор КПК был крайне популярен на заре нулевых, когда мобильные телефоны еще не предоставляли широких возможностей выхода в интернет, но ряд поклонников такой техники до сих пор использует карманники в бизнес-целях.
Пришедшие на смену КПК смартфоны проигрывают в производительности более тяжелым и мощным ноутбукам, зато они имеют неоспоримое достоинство – они умещаются в карман и их всегда можно иметь под рукой. Вряд ли вы получите много удовольствия от использования в качестве основной игровой или рабочей платформы, но тем не менее такая возможность тоже имеется, благодаря чему сегодня практически каждый человек имеет полноценную компьютерную среду в кармане куртки. С персональными компьютерами мы закончили, так что перейдем к следующему типу компьютеров.

Вычислительные серверы

Благодаря таким компьютерам в общем-то и обеспечивается доступ к сетям, в том числе и интернету. Все файлы и информация, которую вы наблюдаете на экране монитора при веб-серфинге, хранится на подобных серверах. Очевидно, что для таких машин огромную роль играет производительность, но есть и более важная характеристика подобных систем – надежность.

Вся информация сайтов должна быть постоянно доступной, иначе мы не сможем ей воспользоваться, а потому вычислительные серверы должны без сбоев работать весь срок своей службы. Такие типы компьютеров всегда имеют резервные копии данных, что сказывается на общей концепции их архитектуры.

В основе такой аппаратуры лежит параллельная обработка информации, потому серверы стали пионерами в развитии многопроцессорности и многоядерности, которая сегодня используется уже повсеместно, в том числе в офисных и домашник ПК. В качестве сервера по сути может выступать даже неттоп или смартфон, но их потенциал в такой роли невелик, а потому большинство современных серверов представляют собой довольно громоздкую технику, состоящую из огромного количества устройств для хранения и обработки данных.

Суперкомпьютеры

Это профессиональные машины с наиболее высокой на сегодняшний день производительностью, они используются в научных лабораториях и крупном бизнесе. Такое устройство представляет собой целый комплекс компьютерных устройств, который может занимать огромные помещения.
Каждый составной элемент подобной махины отвечает за свою конкретную задачу, подобная структуризация и векторная организация позволяют решать самые сложные проблемы, требующие невероятного объема расчетов. Если вы слышите по телевизору о сложном моделировании многоаспектных процессов, например, предсказании природных катастроф, то такой прогноз наверняка был сформирован с помощью использования суперкомпьютера.

Другие виды

Многие устройства, которые мы привыкли воспринимать опосредовано от компьютерной составляющей, например, банкоматы или игровые приставки, так же по большому счету являются компьютерами. Бытовая техника, как сложная, так и вполне примитивная вроде чайников – она тоже имеет в себе небольшие компьютеры, ответственные за выполнение ряда функций.

Роботы, которые постепенно получают все большее распространение в нашей жизни, так же являются компьютерными устройствами. Вполне вероятно, что не за горами тот день, когда компьютеры проникнут даже в человеческое тело, и будут, например, повышать наш уровень зрения или интеллекта. Надеемся, наш краткий обзор помог вам немного разобраться в хитросплетениях разветвленной структуры компьютерных устройств.

Какие бывают компьютеры - это извечный вопрос молодого поколения.

Существуют два основных типа компьютеров: аналоговые и цифровые.

Они различаются принципом построения, способом внутреннего представления информации и реакцией на команды.

Аналоговые компьютеры

Аналоговый компьютер - машина, которая выполняет арифметические расчеты с числами, представленными физическими единицами.

Например, в механических аналоговых компьютерах числа представляются количеством поворотов шестеренок механизма.

В электрических аналоговых машинах для представления числа используются различия в напряжении.

Существенной характеристикой аналоговых компьютеров является то, что количества, представляющие цифровые данные, в течение времени постоянно меняются.

Следовательно, аналоговые компьютеры отличаются от более распространенных цифровых компьютеров, которые оперируют только с цифрами, или количествами, по шаговым изменениям.

Аналоговые компьютеры в большинстве своем являются механическими или электрическими машинами, которые могут выполнять операции сложения, вычитания, умножения и деления.

Результат работы таких компьютеров может быть выражен в виде графиков, рисуемых на экране осциллографа или на бумаге, или электрического сигнала, используемого для контролирования процесса или работы механизма.

Эти компьютеры идеально приспособлены для осуществления автоматического контроля за производственными процессами, так как они мгновенно реагируют на всякие изменения во вводимой информации.

Кроме того, они применяются в научных исследованиях, особенно в тех областях науки, где дешевые электрические или механические приборы способны имитировать изучаемые ситуации.

В ряде случаев с помощью аналоговых компьютеров возможно решать задачи, меньше заботясь о точности вычислений, чем при написании программы для цифровой компьютера.

Например, для электронных аналоговых компьютеров без проблем реализуются задачи, требующие решения дифференциальных уравнений, интегрирования или дифференцирования.

Автомобильная трансмиссия является примером программы работы аналогового компьютера, которая меняется при перемещении ручки переключения передач, заставляя жидкость в гидроприводе изменять направление течения, что позволяет получить необходимый результат.

Помимо технических применений (автоматические трансмиссии, музыкальные синтезаторы) аналоговые компьютеры используют для решения специфических вычислительных задач практического характера.

Цифровые компьютеры

Существуют четыре основных вида цифровых компьютеров:

  • суперкомпьютеры;
  • большие компьютеры (мейнфреймы);
  • миникомпьютеры;
  • микрокомпьютеры.

Это очень мощные компьютеры с производительностью свыше 100 мегафлопов (1 мегафлоп - миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими.

Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств.

Архитектура суперкомпьютеров основана на идеях параллелизма и конвейеризации вычислений.

В этих машинах параллельно, то есть одновременно, выполняется множество похожих операций (это называется мультипроцессорной обработкой). Таким образом, сверхвысокое быстродействие обеспечивается не для всех задач, а только для задач, поддающихся распараллеливанию.

Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки.

Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном - выдает сразу векторные команды.

Суперкомпьютеры используют для решения задач в аэродинамике, метеорологии, физике высоких энергий, геофизике.

Суперкомпьютеры нашли свое применение и в финансовой сфере при обработке больших объемов сделок на биржах.

Мейнфреймы

Мейнфреймы - это универсальные, большие компьютеры общего назначения.

Они занимали господствующие позиции на компьютерном рынке до 1980 годов.

Изначально мейнфреймы были предназначены для обработки огромных объемов информации.

Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 - 300 рабочих мест.

Наиболее крупный производитель мейнфреймов - фирма Ай-Би-Эм (IBM).

Мейнфреймы отличаются исключительной надежностью, высоким быстродействием, очень большой пропускной способностью устройств ввода и вывода информации. К ним могут подсоединяться тысячи терминалов или микрокомпьютеров пользователей.

Мейнфреймы используются крупнейшими корпорациями, правительственными учреждениями, банками.

Миникомпьютеры

Миникомпьютеры занимают промежуточное положение между большими вычислительными машинами и микрокомпьютерами.

В большинстве случаев в миникомпьютерах используется архитектура RISC и UNIX и они играют роль серверов, к которым подключаются десятки и сотни терминалов или микрокомпьютеров.

Миникомпьютеры используются в крупных фирмах, государственных и научных учреждениях, учебных заведениях, компьютерных центрах для решения задач, с которыми не способны справиться микрокомпьютеры, и для централизованного хранения и переработки больших объемов информации.

Основными производителями миникомпьютеров являются фирмы Ай-Ти-энд-Ти (AT&T), Интел (Intel), Хьюлетт-Паккард (Hewlett-Packard), Digital Equipment.

Микрокомпьютеры - это компьютеры, в которых центральный процессор выполнен в виде микропроцессора.

Микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком - персональные компьютеры или сокращенное употребление ПК .

Персональные компьютеры

Персональные компьютеры выпускают в стационарном (настольном) и в портативном исполнении.

Настольные микрокомпьютеры в большинстве случаев состоят из отдельного системного блока, в котором размещаются внутренние устройства и узлы, а также из отдельных внешних устройств (монитор, клавиатура, манипулятор-мышь), без которых немыслимо использование современных компьютеров.

При необходимости к системному блоку микрокомпьютера могут подсоединяться дополнительные внешние устройства (принтер, сканер, акустические системы, джойстик).

Портативные персональные компьютеры

Портативные персональные компьютеры известны прежде всего в блокнотном (ноутбук) исполнении.

В ноутбуке все внешние и внутренние устройства соединены в одном корпусе.

Так же как и к стационарному микрокомпьютеру, к ноутбуку могут быть подсоединены дополнительные внешние устройства.

PDA, электронные органайзеры или палмтопы

Отдельным видом микрокомпьютера считаются карманные компьютеры (PDA , электронные органайзеры , или палмтопы ), небольшие устройства весом до 500 граммов и умещающиеся на кисти одной руки.

Управление ими, как правило, происходит с помощью небольшого по размерам и разрешению экрана, чувствительного к нажатию пальца или специального пера (стилуса), а клавиатура и мышь отсутствуют. Некоторые модели, впрочем, содержат миниатюрную фиксированную или выдвигающуюся из корпуса клавиатуру.

В таких устройствах используются сверхэкономичные процессоры и Flash накопители небольшого объема, поэтому их вычислительная мощь не сопоставима с настольными персональными компьютерами.

Тем не менее, они содержат все признаки персонального компьютера: процессор, накопитель, оперативную память, монитор, операционную систему, прикладное программное обеспечение и даже игры.

Все более популярными становятся карманные персональные компьютеры, содержащие функции мобильного телефона (коммуникаторы). Встроенный коммуникационный модуль позволяет не только совершать звонки, но и подключаться к интернету в любой точке, где есть сотовая связь совместимого формата (GSM/GPRS, CDMA).

Для обозначения всего класса карманных компьютеров в английском языке используется словосочетание Personal Digital Assistant, PDA, что на русский можно перевести как «личный цифровой секретарь».

Различают также IBM PC совместимые микрокомпьютеры (читается Ай-Би-Эм Пи-Си) и IBM PC несовместимые микрокомпьютеры.

В конце 1990 годов IBM PC-совместимые микрокомпьютеры составляли более девяноста процентов мирового компьютерного парка. IBM PC был создан американской фирмой Ай-Би-Эм (IBM) в августе 1981; при его создании был применен принцип открытой архитектуры, который означает применение в конструкции при сборке компьютера готовых блоков и устройств, а также стандартизацию способов соединения компьютерных устройств.

Принцип открытой архитектуры способствовал широкому распространению IBM PC-совместимых микрокомпьютеров-клонов. Их сборкой занялось множество фирм, которые в условиях свободной конкуренции смогли снизить в несколько раз цену на микрокомпьютеры, энергично внедряли в производство новейшие технические достижения. Пользователи, в свою очередь, получили возможность самостоятельно модернизировать свои микрокомпьютеры и оснащать их дополнительными устройствами сотен производителей.

Единственный из IBM PC-несовместимых микрокомпьютеров, получивший относительно широкое распространение, - компьютер Макинтош (Macintosh ) фирмы Apple. Работает под управлением операционной системы Mac OS (в настоящее время - Mac OS X).

Компьютеры Macintosh могут использоваться как полноценные рабочие станции, специализированные компьютеры, а так же в качестве офисных.

Имеется богатый выбор программного обеспечения - системного и прикладного, в том числе и совместимого по форматам файлов с распространенными программами PC (например, Microsoft Word, Adobe Photoshop).

Исторически сложилось, что компьютеры Macintosh широко используются в сфере компьютерной графики и полиграфии.

Во второй половине 1990 годов в связи с бурным развитием глобальных компьютерных сетей появляется новый тип персонального компьютера - сетевой компьютер, который предназначен только для работы в компьютерной сети.

Сетевому компьютеру не нужны собственная дисковая память, дисководы.

Операционную систему, программы и информацию он будет черпать в сети.

Предполагается, что сетевые компьютеры будут значительно дешевле настольных персональных компьютеров и постепенно заменят их в фирмах, работающих со специализированными приложениями (телефонная связь, бронирование билетов), и в образовательных учреждениях.

Принципы работы компьютера

Важнейшей функцией компьютера является преобразование данных (информации), кроме того, компьютер должен иметь возможность принимать, хранить и выводить данные. В связи с особенностями технической реализации внутреннее представление данных в компьютере отличается от представления для пользователя. Данные, с которыми работает компьютер, могут быть дискретными (т.е. составленными из отдельных частей) или непрерывными. Преобразованием непрерывных данных занимаются так называемые аналоговые компьютеры, а с дискретными данными работают цифровые компьютеры, которые получили в настоящее время наибольшее распространение. Существуют также комбинированные (аналого-цифровые) компьютеры. Непрерывные данные могут быть преобразованы в дискретные (процесс дискретизации) с определенной точностью (т.е. шагом или частотой дискретизации). Таким образом, данные любого рода могут быть представлены в унифицированном дискретном виде, например, в виде последовательности знаков некоторого алфавита. Наиболее простым и удобным с точки зрения технической реализации является алфавит, состоящий всего из двух знаков с противоположными значениями, - двоичный код, который принято записывать в виде цифр «1» и «0». В двоичной системе счисления знаки «1» и «0» называются битами. В электронных машинах значением одного знака будет наличие электрического сигнала, а другого - отсутствие сигнала.

Поскольку в современном цифровом компьютере любые данные (будь то текст, рисунок, звук, видеозапись и т.д.) представлены в виде последовательности цифр, их преобразование сводится к математическим и логическим операциям (вычислениям). Этим и объясняется название «вычислительная машина». С 1990-х в русском языке прочно укоренился термин «компьютер», который по целому ряду причин (интеграция России в мировое сообщество, повсеместное внедрение «персональных компьютеров» (‛Personal Computer‛ является торговой маркой фирмы IBM), увеличение разнородности выполняемых электронными машинами задач и др.) вытесняет термин «электронная вычислительная машина».

В отличие от многих других вычислительных устройств (логарифмической линейки, счет или простых калькуляторов) компьютеры обеспечивают возможность частичной или полной автоматизации процесса решения сложных (состоящих из множества шагов) задач. Автоматизация достигается за счет того, что любая задача, связанная с преобразованием информации и управлением машиной, формулируется в виде компьютерной программы. Компьютерная программа представляет собой алгоритм решения задачи, записанный на одном из языков программирования и переводимый в машинный код, т.е. последовательность «1» и «0».

Устройство компьютера

Функционирование компьютера обеспечивается двумя взаимосвязанными и равно необходимыми компонентами: техническим обеспечением (hardware - «хард», «железо»), т.е. комплексом технических устройств, и программным обеспечением, ПО (software - «софт»), включающим системные и прикладные программы.

Наиболее общие принципы построения и функционирования компьютеров принято называть архитектурой. Впервые такие принципы были сформулированы в 1946 американским ученым Джоном фон Нейманом. В соответствии с архитектурой фон Неймана в состав компьютера должны входить: устройство, выполняющее арифметические и логические операции (АЛУ); устройство управления; запоминающее устройство (ЗУ) и внешние устройства для ввода-вывода данных. Большинство современных компьютеров в целом соответствует принципам фон Неймана, однако, арифметическо-логическое устройство и устройство управления, как правило, объединены в центральный процессор - вычислительный мозг машины. Многие быстродействующие компьютеры осуществляют параллельную обработку данных на нескольких процессорах (многопроцессорные системы) или ядрах внутри одного процессора (многоядерные процессоры). Пользовательские данные и программы хранятся различных запоминающих устройствах, которые обобщенно называют памятью. Для долговременного хранения данных используют энергонезависимые и емкие устройства внешней памяти (жесткие диски, оптические компакт-диски и т.д.). Для хранения данных, непосредственно используемых процессором в текущем сеансе работы, применяются устройства внутренней памяти, многие из которых (оперативная память, кэш-память) выполняют роль буфера между процессором и более медленными устройствами (внешней) памяти. Ввод и вывод данных в компьютер осуществляется с помощью целого ряда устройств (клавиатуры, мыши, сканера, монитора, принтера и т.д.).

Современный персональный компьютер (ПК), построенный на базе открытой архитектуры, как правило, состоит из системного блока, в котором с помощью системы шин материнской (системной) платы объединены все важнейшие устройства, в том микропроцессор, модули оперативной памяти, жесткий диск, дисководы, а также карты расширения (для создания изображения служит видеокарта, для создания звука - звуковая карта, для подключения компьютера к сети - сетевая карта и т.д.). К системному блоку подключаются внешние устройства, в т.ч. устройства ввода и вывода информации. В некоторых компьютерах одни устройства могут интегрироваться с другими. Так, в корпусе портативных компьютеров (ноутбуки, КПК и т.д.) системный блок часто бывает совмещен с устройствами ввода-вывода информации. В бюджетных настольных компьютерах устройства преобразования аудио и видеосигнала, обеспечения сетевой коммуникации и т.д. могут быть интегрированы в чипсет материнской платы.

Типы компьютеров

Существующие компьютеры могут классифицироваться по разным основаниям.

По вычислительной мощности и габаритам все компьютеры делят на несколько классов. Наиболее мощные компьютеры своего времени называют суперкомпьютерами. Они стоят миллионы долларов, выпускаются партиями в десятки штук и используются только для самых сложных и важных расчетов. Менее производительны, но более доступны так называемые большие компьютеры, которые, как и суперкомпьютеры, требуют специального помещения и высокопрофессионального обслуживания. Промежуточное положение занимают компьютеры средней производительности и миникомпьютеры. Создание микропроцессоров привело к появлению класса микрокомпьютеров, к которому относятся в частности персональные компьютеры и ноутбуки. Мини- и микрокомпьютеры имеют шинную организацию, стандартизированное аппаратное и программное обеспечение. Определенная разница в габаритах между представителями вышеперечисленных классов достаточно очевидна, но различия в производительности зависят от времени выпуска: некоторые современные микрокомпьютеры не уступают в производительности устаревшим машинам более высокого класса.

По назначению компьютеры подразделяют на универсальные (предназначенные для решения широкого круга задач), специализированные (предназначенные для решения узкого класса определенных задач), управляющие (предназначенная для автоматического управления объектом (устройством, системой, процессом) в реальном масштабе времени), бытовые (см. Домашний ПК) и др.

По функциям, выполняемым в многомашинных комплексах, разделяют хост и сервер.

По степени развития компьютеры (с началом их серийного производства) условно подразделяются на несколько поколений. Каждое поколение отличается от других архитектурой, элементной базой (в особенности процессора), степенью развитости программных средств и средств взаимодействия с пользователем, производительностью и другими показателями. Временные рамки поколений компьютерной техники достаточно размыты, т.к. в одно и то же время выпускались машины разных поколений.

История вычислительной техники

История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 английским математиком Чарлзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты - листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Управление такой машиной должно было осуществляться программным путем.

Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. В 1888 американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.

В 1896 Герман Холлерит основал фирму Computing Tabulating Recording Company, которая стала основой для будущей Интернэшнл Бизнес Мэшинс (International Business Machines Corporation, IBM) - компании, внесшей гигантский вклад в развитие мировой компьютерной техники.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В феврале 1944 на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета по заказу ВМС США была создана машина «Марк-1». Это был монстр весом около 35 тонн. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо четыре секунды.

Но электромеханические реле работали недостаточно быстро. Поэтому уже в 1943 американцы начали разработку альтернативного варианта - вычислительной машины на основе электронных ламп. В 1946 была построена первая электронная вычислительная машина ENIAC. Ее вес составлял 30 тонн, она требовала для размещения 170 квадратных метров площади. Вместо тысяч электромеханических деталей ENIAC содержал 18 тысяч электронных ламп. Считала машина в двоичной системе и производила пять тысяч операций сложения или триста операций умножения в секунду.

Машина на электронных лампах работала существенно быстрее, но сами электронные лампы часто выходили из строя. Для их замены в 1947 американцы Джон Бардин, Уолтер Браттейн и Уильям Брэдфорд Шокли предложили использовать изобретенные ими стабильные переключающие полупроводниковые элементы - транзисторы.

Совершенствование первых образцов вычислительных машин привело в 1951 к созданию компьютера UNIVAC, предназначенного для коммерческого использования. UNIVAC стал первым серийно выпускавшимся компьютером, а его первый экземпляр был передан в Бюро переписи населения США.

С активным внедрением транзисторов в 1950-х годах связано рождение второго поколения компьютеров. Один транзистор был способен заменить 40 электронных ламп. В результате быстродействие машин возросло в 10 раз при существенном уменьшении веса и размеров. В компьютерах стали применять запоминающие устройства из магнитных сердечников, способные хранить большой объем информации.

В 1959 были изобретены интегральные микросхемы (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволяет сократить пути прохождения тока при переключениях, и скорость вычислений повышается в десятки раз. Существенно уменьшаются и габариты машин. Появление чипа знаменовало собой рождение третьего поколения компьютеров.

К началу 1960-х годов компьютеры нашли широкое применение для обработки большого количества статистических данных, производства научных расчетов, решения оборонных задач, создания автоматизированных систем управления. Высокая цена, сложность и дороговизна обслуживания больших вычислительных машин ограничивали их использование во многих сферах. Однако процесс миниатюризации компьютера позволил в 1965 американской фирме Digital Equipment выпустить миникомпьютер PDP-8 ценой в 20 тысяч долларов, что сделало компьютер доступным для средних и мелких коммерческих компаний.

В 1970 сотрудник компании Intel Эдвард Хофф создал первый микропроцессор, разместив несколько интегральных микросхем на одном кремниевом кристалле. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. С микропроцессом появляются микрокомпьютеры - компьютеры четвертого поколения, способные разместиться на письменном столе пользователя.

В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера - вычислительной машины, предназначенной для частного пользователя. Во второй половине 1970-х годов появляются наиболее удачные образцы микрокомпьютеров американской фирмы Apple, но широкое распространение персональные компьютеры получили с созданием в августе 1981 фирмой IBM модели микрокомпьютера IBM PC. Применение принципа открытой архитектуры, стандартизация основных компьютерных устройств и способов их соединения привели к массовому производству клонов IBM PC, широкому распространению микрокомпьютеров во всем мире.

За последние десятилетия 20 века микрокомпьютеры проделали значительный эволюционный путь, многократно увеличили свое быстродействие и объемы перерабатываемой информации, но окончательно вытеснить миникомпьютеры и большие вычислительные системы - мейнфреймы они не смогли. Более того, развитие больших вычислительных систем привело к созданию суперкомпьютера - суперпроизводительной и супердорогой машины, способной просчитывать модель ядерного взрыва или крупного землетрясения. В конце 20 века человечество вступило в стадию формирования глобальной информационной сети, которая способна объединить возможности различных компьютерных систем.