Основу пзу составляют микросхемы памяти. Построение внутренней памяти процессорной системы - курсовая работа. Постоянные запоминающие устройства

Постоянное запоминающее устройство (ПЗУ, ROM), которое еще называют встроенной программой, представляет собой интегральную микросхему, при изготовлении запрограммированную определенными данными. ПЗУ используются не только в компьютерах, но и в большинстве других электронных устройств.

Прежде чем говорить о конкретных типах современных микросхем памяти, надо немного вспомнить прошлое и разобраться в основных принципах работы электронной памяти и особенностях ее адресации.

Компьютеры, в отличие от людей, которые пользуются десятичной системой счисления, используют двоичную арифметику, т. е. в любом разряде машинного числа может находиться либо "0" -- нет, либо "1" -- да. Соответственно, и каждая ячейка электронной памяти компьютера должна запоминать одно из двух значений -- 0 или 1. Самое простое запоминающее устройство -- это набор тумблеров или реле, которые замыкают или размыкают электрическую цепь. Если вспомнить, то старинные вычислительные машины как раз использовали для оперативной памяти реле, а в качестве ПЗУ применялись обычные тумблеры (и это не удивительно, т. к. даже мини-ЭВМ 80-х годов прошлого века имели панель с набором тумблеров для ввода команд).

Развитие полупроводниковых технологий привело к тому, что для электронной памяти персонального компьютера в большинстве случаев используются кремниевые интегральные микросхемы. А минимальная ячейка памяти в микросхеме -- это триггер, который в самом простейшем случае собирается на двух транзисторах. Но поскольку для управления триггером требуются цепи управления, то элементарная запоминающая ячейка современной статической памяти, которая применяется, в частности, для кэш-памяти, содержит иногда до десятка транзисторов. Для примера на рис. 12 показана схема ячейки памяти КМОП-микросхемы. В ней из шести КМОП-транзисторов только транзисторы V3 и V5 отвечают за хранение информации, а остальные используются по другому назначению.

Так как в современном компьютере применяются микросхемы, содержащие сотни тысяч ячеек, то для упрощения управления запоминающие ячейки группируются в квадратные матрицы. Для обращения к конкретной ячейке памяти используется адрес, формируемый из номера строки и столбца (рис. 13). Как только на шинах столбцов и строк будет установлен правильный адрес нужной ячейки, на выходе матрицы появится напряжение, соответствующее информации, записанной в ячейку памяти. Заметим, что такой принцип адресации используется и для чтения или записи байта в оперативной памяти, но при этом за каждый разряд байта или слова отвечает своя запоминающая матрица, которая, чаще всего, находится в отдельной микросхеме.

Для записи информации в конкретную ячейку микросхемы предназначен всего один вывод. Когда на шине адреса установится нужный адрес ячейки памяти, то, хотя сигнал записи будет подан на все ячейки, запись произойдет только в ту ячейку, которая будет в данный момент выбрана (адресована).

Рисунок 12. Схема ячейки памяти КМОП-микросхемы

Принцип записи и чтения ячеек памяти в запоминающей матрице хорошо иллюстрируется на примере ферритовой памяти (рис. 14). На заре компьютерной эры она представляла собой небольшие ферритовые колечки, находящиеся в узелках проволочной сетки. Чтобы сформировать сигнал чтения и записи, через все колечки продевался отдельный провод. Заметим, что для записи "1" и "0" использовалось свойство ферромагнетиков перемагничи-ваться под действием электрического тока. Самые маленькие ферритовые колечки были диаметром всего около 1 мм. С появлением полупроводниковых микросхем памяти о ферритовой памяти надолго забыли, но совсем недавно появились микросхемы FeRAM, в которых сочетается кремниевая технология производства микросхем и свойство ферромагнитных материалов изменять свое сопротивление в зависимости от приложенного магнитного поля.

Процессоры имеют шину данных, кратную 8 разрядам, например, 8, 16, 32 или 64. В старых персональных компьютерах электронная память собиралась из микросхем, имеющих, например 64, 128, 256 и т. д. ячеек. На системных платах персональных компьютеров IBM PC можно было увидеть ряды микросхем памяти, занимающих там слишком много места. Чтобы уменьшить количество микросхем и упростить их электрические соединения друг с другом, на одном кремниевом кристалле стали создавать несколько отдельных матриц запоминающих ячеек. Наиболее популярными оказались варианты, когда микросхема памяти имеет разрядность равную 4 и 8, что позволило уменьшить количество корпусов на плате.

Рисунок 13

В документации и прайс-листах на микросхемы памяти всегда указывается не только общий ее объем, но и как организованы ячейки памяти. Например, ниже приводятся строчки из прайс-листа на микросхемы динамической памяти DDR и SDRAM:

· DDR 256Mb, 32Мх8, 266MHz;

· DDR 128Mb, 1бМх8, 266MHz;

· SDRAM 256Mb, 32Mx8, 133MHz;

· SDRAM 128Mb, 16Mx8, 133MHz.


Рисунок 14. Принцип записи и чтения ячеек памяти в запоминающей матрице

Заметьте, что в начале идет условное обозначения типа микросхемы, а в конце указывается максимальная тактовая частота шины, на которой они могут работать. Объем памяти в микросхеме указывается в двух вариантах: 256Mb -- общее количество ячеек памяти в микросхеме; 32Мх8 -- это обозначение показывает, что на каждый разряд приходится по 32 Мбайт (также используется термин "глубина адресного пространства", от англ, address depth). Если умножить 32 Мбайт на 8, то получается 256 Мбайт

Память - это всегда очень сложная структура, включающая в себя множество элементов. Правда, внутренняя структура памяти - регулярная, большинство элементов одинаковые, связи между элементами сравнительно простые, поэтому функции, выполняемые микросхемами памяти, не слишком сложные.

Память , как и следует из ее названия, предназначена для запоминания, хранения каких-то массивов информации, проще говоря, наборов, таблиц, групп цифровых кодов. Каждый код хранится в отдельном элементе памяти, называемом ячейкой памяти. Основная функция любой памяти как раз и состоит в выдаче этих кодов на выходы микросхемы по внешнему запросу. А основной параметр памяти - это ее объем, то есть количество кодов, которые могут в ней храниться, и разрядность этих кодов.

Для обозначения количества ячеек памяти используются следующие специальные единицы измерения:

  • 1К - это 1024, то есть 2 10 (читается "кило-"" или "ка-"), примерно равно одной тысяче;
  • 1М - это 1048576, то есть 2 20 (читается "мега-"), примерно равно одному миллиону;
  • 1Г - это 1073741824, то есть 2 30 (читается "гига-"), примерно равно одному миллиарду.

Принцип организации памяти записывается следующим образом: сначала пишется количество ячеек, а затем через знак умножения (косой крест) - разрядность кода, хранящегося в одной ячейке. Например, организация памяти 64Кх8 означает, что память имеет 64К (то есть 65536) ячеек и каждая ячейка - восьмиразрядная. А организация памяти 4М х 1 означает, что память имеет 4М (то есть 4194304) ячеек, причем каждая ячейка имеет всего один разряд. Общий объем памяти измеряется в байтах (килобайтах - Кбайт, мегабайтах - Мбайт, гигабайтах - Гбайт) или в битах (килобитах - Кбит, мегабитах - Мбит, гигабитах - Гбит).

В зависимости от способа занесения (записи) информации и от способа ее хранения, микросхемы памяти разделяются на следующие основные типы:

  • Постоянная память (ПЗУ - постоянное запоминающее устройство , ROM - Read Only Memory - память только для чтения), в которую информация заносится один раз на этапе изготовления микросхемы. Такая память называется еще масочным ПЗУ . Информация в памяти не пропадает при выключении ее питания, поэтому ее еще называют энергонезависимой памятью.
  • Программируемая постоянная память (ППЗУ - программируемое ПЗУ , PROM - Programmable ROM), в которую информация может заноситься пользователем с помощью специальных методов (ограниченное число раз). Информация в ППЗУ тоже не пропадает при выключении ее питания, то есть она также энергонезависимая.
  • Оперативная память (ОЗУ - оперативное запоминающее устройство , RAM - Random Access Memory - память с произвольным доступом), запись информации в которую наиболее проста и может производиться пользователем сколько угодно раз на протяжении всего срока службы микросхемы. Информация в памяти пропадает при выключении ее питания.

Существует множество промежуточных типов памяти, а также множество подтипов , но указанные - самые главные, принципиально отличающиеся друг от друга. Хотя, разница между ПЗУ и ППЗУ с точки зрения разработчика цифровых устройств, как правило, не так уж велика. Только в отдельных случаях, например, при использовании так называемой флэш-памяти (flash- memory ), представляющей собой ППЗУ с многократным электрическим стиранием и перезаписью информации, эта разница действительно чрезвычайно важна. Можно считать, что флэш-память занимает промежуточное положение между ОЗУ и ПЗУ .

В общем случае любая микросхема памяти имеет следующие информационные выводы (рис. 11.1):


Рис. 11.1.

  • Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .
  • Выводы данных (выходные), образующие шину данных памяти. Код на линиях данных представляет собой содержимое той ячейки памяти, к которой производится обращение в данный момент. Количество разрядов данных определяет количество разрядов всех ячеек памяти (обычно оно бывает равным 1, 4, 8, 16). Как правило, выходы данных имеют тип выходного каскада ОК или 3С.
  • В случае оперативной памяти, помимо выходной шины данных , может быть еще и отдельная входная шина данных , на которую подается код, записываемый в выбранную ячейку памяти. Другой возможный вариант - совмещение входной и выходной шин данных, то есть двунаправленная шина, направление передачи информации по которой определяется управляющими сигналами. Двунаправленная шина применяется обычно при количестве разрядов шины данных 4 или более.
  • Управляющие выводы (входные), которые определяют режим работы микросхемы. В большинстве случаев у памяти имеется вход выбора микросхемы CS (их может быть несколько, объединенных по функции И). У оперативной памяти также обязательно есть вход записи WR, активный уровень сигнала на котором переводит микросхему в режим записи.

Мы в данной лекции не будем, конечно, изучать все возможные разновидности микросхем памяти, для этого не хватит целой книги. К тому же эта информация содержится в многочисленных справочниках. Микросхемы памяти выпускаются десятками фирм во всем мире, поэтому даже перечислить все их не слишком просто, не говоря уже о том, чтобы подробно рассматривать их особенности и параметры. Мы всего лишь рассмотрим различные схемы включения типичных микросхем памяти для решения наиболее распространенных задач, а также методы проектирования некоторых узлов и устройств на основе микросхем памяти. Именно это имеет непосредственное отношение к цифровой схемотехнике. И именно способы включения микросхем мало зависят от характерных особенностей той или иной микросхемы той или иной фирмы.

В данном разделе мы не будем говорить о флэш-памяти, так как это отдельная большая тема. Мы ограничимся только простейшими микросхемами ПЗУ и ППЗУ, информация в которые заносится раз и навсегда (на этапе изготовления или же самим пользователем). Мы также не будем рассматривать здесь особенности оборудования для программирования ППЗУ (так называемых программаторов ), принципы их построения и использования, - это отдельная большая тема. Мы будем считать, что нужная нам информация может быть записана в ПЗУ или ППЗУ, а когда, как, каким способом она будет записана, нам не слишком важно. Все эти допущения позволят нам сосредоточиться именно на схемотехнике узлов и устройств на основе ПЗУ и ППЗУ (для простоты будем называть их в дальнейшем просто ПЗУ ).

Упомянем здесь только, что ППЗУ делятся на репрограммируемые или перепрограммируемые

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах, и , таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.

Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре.

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.

Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах.

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.

Рисунок 3. Схема многоразрядного ПЗУ (ROM).

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и . Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:


Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM).

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ). Чтение микросхемы производится сигналом RD.

Рисунок 5. масочного ПЗУ (ROM) на принципиальных схемах.

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.

Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах.

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:

Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием.

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Структурная схема описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 — 30 минут.

Количество циклов записи — стирания микросхем EPROM находится в диапазоне от 10 до 100 раз, после чего микросхема РПЗУ выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения на оксид кремния. В качестве примера микросхем EPROM можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В РПЗУ чаще всего хранятся программы BIOS универсальных компьютеров. РПЗУ изображаются на принципиальных схемах как показано на рисунке 8.

Рисунок 8. Условно-графическое обозначение РПЗУ (EPROM) на принципиальных схемах.

Так так корпуса с кварцевым окошком очень дороги, а также малое количество циклов записи-стирания привели к поиску способов стирания информации из РПЗУ электрическим способом. На этом пути встретилось много трудностей, которые к настоящему времени практически решены. Сейчас достаточно широко распространены микросхемы с электрическим стиранием информации. В качестве запоминающей ячейки в них используются такие же ячейки как и в РПЗУ, но они стираются электрическим потенциалом, поэтому количество циклов записи-стирания для этих микросхем достигает 1000000 раз. Время стирания ячейки памяти в таких ПЗУ уменьшается до 10 мс. Схема управления для электрически стираемых программируемых ПЗУ получилась сложная, поэтому наметилось два направления развития этих микросхем:

  1. ЕСППЗУ (EEPROM) — электрически стираемое программируемое постоянное запоминающее устройство
  2. FLASH-ПЗУ

Электрически стираемые ППЗУ (EEPROM) дороже и меньше по объему, но зато позволяют перезаписывать каждую ячейку памяти отдельно. В результате эти микросхемы обладают максимальным количеством циклов записи-стирания. Область применения электрически стираемых ПЗУ — хранение данных, которые не должны стираться при выключении питания. К таким микросхемам относятся отечественные микросхемы 573РР3, 558РР3 и зарубежные микросхемы EEPROM серии 28cXX. Электрически стираемые ПЗУ обозначаются на принципиальных схемах как показано на рисунке 9.

Рисунок 9. Условно-графическое обозначение электрически стираемого постоянного запоминающего устройства (EEPROM) на принципиальных схемах.

В последнее время наметилась тенденция уменьшения габаритов ЭСППЗУ за счет уменьшения количества внешних выводов микросхем. Для этого адрес и данные передаются в микросхему и из микросхемы через последовательный порт. При этом используются два вида последовательных портов — SPI порт и I2C порт (микросхемы 93сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

FLASH-ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.

Рисунок 10. Условно-графическое обозначение FLASH памяти на принципиальных схемах.

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 11.


Рисунок 11. Временные диаграммы сигналов чтения информации из ПЗУ.

На рисунке 11 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD — это сигнал чтения, A — сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D — выходная информация, считанная из выбранной ячейки ПЗУ.

Литература:

Вместе со статьей "Постоянные запоминающие устройства (ПЗУ)" читают:


http://сайт/digital/SintSxem.php

ется процессоров RISC, то они близки к тому, чтобы выполнять по одной команде в каждом такте.

Также с упрощением ЦП уменьшается число транзисторов, необходимых для его реализации, следовательно, уменьшается площадь кристалла. А с этим связано снижение стоимости и потребляемой мощности.

Следует также иметь в виду, что благодаря своей простоте процессоры RISC не патентуются. Это также способствует их быстрой разработке и широкому производству. Между тем, в сокращенный набор RISC вошли только наиболее часто используемые команды. Ряд редко встречающихся команд процессора CISC выполняется последовательностями команд процессора RISC.

Позже появилась концепция процессоров MISC, использующая минимальный набор длинных команд. Вслед за ними возникли процессоры VLIW, работающие со сверхдлинными командами. Быстродействие процессоров определяется в миллионах операций в секунду MIPS .

Память в микропроцессорных устройствах

В микропроцессорных устройствах память служит для хранения исходных данных программ обработки информации промежуточных и окончательных результатов вычисления.

Выделяют два основных типа памяти:

∙ОЗУ - оперативное запоминающее устройство, используемое для хранения данных, поэтому эту память называют еще памятью данных. Число циклов чтения и записи в ОЗУ не ограничено, но при отключении питающего напряжения вся информация теряется;

В современных микропроцессорах память ОЗУ представляет собой многоуровневую систему, в которой выделяют уровни сверхоперативной памяти (СОЗУ), ОЗУ, буферной памяти (БЗУ) и внешней памяти (ВЗУ).

Каждый последующий уровень отличается от предыдущего емкостью и быстродействием.

Емкостью называется максимальное количество информации, которая может быть записана в память.

Быстродействие характеризуется длительностью операций чтения и записи - двух основных операций, выполняемых памятью.

Для указанных уровней памяти емкость растет в направлении от СОЗУ к ВЗУ, а быстродействие в противоположном направлении.

∙ПЗУ - постоянное запоминающее устройство, предназначенное для хранения программ, поэтому часто эту память называют кодовой или памятью программ. Микросхемы ПЗУ способны сохранять информацию при отключенном электропитании, но могут быть запрограммированы только один или очень ограниченное число раз.

Основные характеристики полупроводниковой памяти

Основные характеристики памяти, которые необходимо учитывать при проектировании систем:

∙Емкость памяти определяется числом бит хранимой информации. Емкость кристалла обычно выражается также в битах. Важной характеристикой кристалла является информационная организация кристалла памяти MxN, где M - число слов, N - разрядность слова. При одинаковом времени обращения память с большей шириной выборки обладает большей информационной емкостью.

∙Временные характеристики памяти.

1.1 Время доступа - временной интервал, определяемый от момента, когда центральный процессор выставил на шину адреса адрес требуемой ячейки памяти и послал по шине управления приказ на чтение или запись данных, до момента осуществления связи адресуемой ячейки с шиной данных.

o Время восстановления - это время, необходимое для приведения памяти в исходное состояние после того, как ЦП снял с ША адрес, с ШУ сигнал «чтение» или «запись» и с ШД данные.

∙Удельная стоимость запоминающего устройства определяется отношением его стоимости к информационной емкости, т.е. определяется стоимостью бита хранимой информации.

∙Потребляемая энергия (или рассеиваемая мощность) приводится для двух режимов работы кристалла: режима пассивного хранения информации и активного режима, когда операции записи и считывания выполняются с номинальным быстродействием.

∙Плотность упаковки определяется площадью запоминающего элемента и зависит от числа транзисторов в схеме элемента и используемой технологии. Наибольшая плотность упаковки достигнута в кристаллах динамической памяти.

∙Допустимая температура окружающей среды обычно указывается отдельно для активной работы, для пассивного хранения информации и для нерабочего состояния с отключенным питанием. Указывается тип корпуса, если он стандартный, или чертеж корпуса с указанием всех размеров, маркировкой и нумерацией контактов, если корпус новый. Приводятся также условия эксплуатации: рабочее положение, механические воздействия, допустимая влажность и другие

Типы микросхем постоянных запоминающих устройств (ПЗУ)

Существуют следующие основные типы ПЗУ:

∙масочные ПЗУ - они программируются в процессе их изготовления путем нанесения маски из замкнутых (высокий уровень) и разомкнутых перемычек (низкий уровень), этот тип ПЗУ наиболее дешев, но при изготовлении крупной партией;

∙ПЗУ с плавкими перемычками или электрически программируемые (ЭПЗУ ) - эти микросхемы программируются потребителем путем пропускания импульсов тока до разрушения перемычек, соответствующих битам, которые должны стать нулевыми;

∙перепрограммируемые ПЗУ с электрической записью информации и стиранием ультрафиолетовым излучением (УФППЗУ ) - основа ячейки памяти микросхемы данного типа - МОП-транзистор с полностью изолированным «плавающим» затвором, при программировании окисел пробивается и на затворе накапливается заряд, который сохраняется там пока микросхема не будет подвергнута УФ-облучению, под его действием окисел становится проводящим; сопротивление канала транзистора зависит от заряда на затворе и будет определять бит, записанный в ячейку;

∙электрически стираемые ПЗУ(ЕЕPRОМ ) устроены аналогично УФППЗУ, но стирание происходит, как и запись, при подаче импульсов напряжения; это самый дорогой, но и самый удобный тип ПЗУ.

∙FLASH-память - наиболее популярная в настоящее время. Ее главное достоинство в том, что она построена по принципу электрической перепрограммируемости, т. е. допускает многократное стирание и запись информации с помощью программаторов. Минимальное гарантированное число циклов записи/стирания обычно превышает несколько тысяч. Это существенно увеличивает жизненный цикл и повышает гибкость микропроцессорных систем, так как позволяет вносить изменения в программу микропроцессора, как на этапе разработки системы, так и в процессе его работы в реальном устройстве.

Типы микросхем ОЗУ

Существует два типа микросхем ОЗУ:

∙статические ОЗУ, в которых основой запоминающей ячейки служит триггер;

ОЗУ (англ. RAM) и ПЗУ (англ. ROM) - это цифровые накопители информации. Их применяют, если внутренних ресурсов MK по тем или иным причинам недостаточно. Для сравнения, объём памяти данных MK составляет 0.5…8 Кбайт, объём памяти программ - 2…256 Кбайт. Подключить же к MK можно ещё одну или несколько внешних микросхем ОЗУ ёмкостью 32…512 Кбайт или флэш-ПЗУ ёмкостью 0.5…128 Мбайт. Увеличение вычислительных ресурсов налицо.

Обобщённые структурные схемы ОЗУ и ПЗУ во многом совпадают (Рис. 3.8). Базой служит прямоугольная матрица ячеек памяти, доступ к которой осуществляется через линии адреса AO…An, а чтение/запись - через двунаправленную шину данных I/OO…I/Ok. Многочисленные разновидности ОЗУ и ПЗУ отличаются друг от друга логикой формирования сигналов управления CS, WR, RD, а также наличием или отсутствием мультиплексирования адресных линий.

Рис. 3.8. Структурная схема ОЗУ (ПЗУ).

Внешние ПЗУ лучше использовать «низковольтные» электрически перезаписываемые (ключевое слово «Flash»). Напряжение программирования у них составляет 5 В в отличие от 12…27 В в старинных «высоковольтных» ПЗУ 27C256, КР573РФ6А, которые применять сейчас совместно с MK не имеет смысла.

Типовое время хранения информации в флэш-ПЗУ достигает 10…40 лет при 0.1…1 млн циклов перезаписи. Различают последовательные и параллельные флэш-ПЗУ. Первые из них малогабаритные, маловыводные, но они имеют низкую скорость доступа и невысокую ёмкость. Пример - серии 24Cxxx, 93Cxx. Для подключения таких ПЗУ к MK применяют двух или трёхпроводные интерфейсы PC, SPI. В противовес этому параллельные флэш-ПЗУ обладают большим объёмом памяти, хорошим быстродействием, но требуют для сопряжения с MK много выводов (два-три свободных 8-битных порта). Пример - серии 28Fxxx, 29Cxxx.

Внешние ОЗУ имеют высокую скорость записи и чтения, но информация в них теряется при выключении питания. Для сопряжения ОЗУ с MK используют обе линии портов. Иногда выгоднее их перевести в специальный режим «External RAM», при котором область внешнего ОЗУ включается в общую карту памяти. Поддерживает ли конкретный MK подобный режим, можно определить по специфическим названиям линий портов в его условном обозначении. Например, на Рис. 3.9 это «АР0»…«АР7» (шина данных/адреса), «А8»…«А15» (старшие разряды шины адреса), «ALE», «WR», «RD» (сигналы управления).

На Рис. 3.10, а…и приведены схемы подключения внешней памяти к MK.

а) микросхема DS1 (фирма Samsung) - это «интеллектуальное» перепрограммируемое ПЗУ с собственой системой команд. Применяется, в частности, в USB-накопителях;

Рис. 3.9. Расположение выводов и названия сигналов в MK Atmel ATmega8515.

б) 16-разрядная информация в динамическом ОЗУ DS1 (фирма OKI) передаётся/принимается через выводы «1/01»…«1/04» последовательно во времени четырьмя блоками;

Рис. ЗЛО. Схемы подключения внешней памяти к MK (продолжение):

в) шина адреса «А0»…«А18» и шина данных «Ю0»…«Ю7» статического ОЗУ DS1 (фирма Samsung) мультиплексируются регистрами DD1, DD2. По фронтам сигналов F1, F2 в регистрах за два раза защёлкивается полный адрес ячейки. Недостающие адреса формируются прямо от MK («R0»…«R2»). При чтении/записи ОЗУ («*RD»/«*WR») работают 8 верхних линий MK;

г) DS1 - это ферроэлектрическое последовательное «ОЗУ/ПЗУ» FRAM (фирма Ramtron), подключаемое к MK по шине PC. При поданном питании FRAM эквивалентна ОЗУ, а при выключенном - ПЗУ. Число перезаписей не ограничено (!), время хранения информации 45 лет;

д) подключение последовательного ОЗУ DS1 (64Kx8) к MK через трёхпроводной интерфейс и «антизвонные» резисторы R2…R4;

Рис. 3.10. Схемы подключения внешней памяти к MK (продолжение):

е) в регистре DD1 хранятся младшие 8 бит шины адреса. Старшие 7 бит подаются от MK непосредственно на ОЗУ DS1 фирмы Hitachi. MK работает в режиме «External RAM». На вход «СЕ» ОЗУ DS1 вместо общего провода можно подать сигнал разрешения со свободного выхода MK. Это позволяет снизить общий расход энергии от источника питания, поскольку при ВЫСОКОМ уровне на входе «СЕ» микросхема DS1 переходит в экономичный режим хранения данных;

ж) подключение к MK последовательного флэш-ОЗУ DS1 фирмы Atmel. Если переключатель S1 замкнут, то в ОЗУ нельзя записывать данные, это режим защиты. Резисторы R3, R4 в некоторых схемах отсутствуют. Замена DS1 - любое ОЗУ большей/меньшей ёмкости из семейства DataFlash AT45DB фирмы Atmel, включая устаревшие модели AT45DB081B-CNU;

Рис. 3.10. Схемы подключения внешней памяти к MK (окончание):

з) при прямом подключении флэш-ПЗУ DS1 (фирма AMD) к MK требуется большое количество свободных линий портов. Некоторые выходные линии MK, например, «А7», могут быть одновременно задействованы для управления другими узлами, однако делать это допускается только тогда, когда отсутствует обращение к ПЗУ, т.е. при ВЫСОКОМ уровне сигнала «ОЕ»;

и) увеличение ёмкости ОЗУ за счёт параллельного соединения микросхем DSl…DSn. Каждое из подключённых ОЗУ имеет собственный сетевой программный адрес, который определяется разными логическими уровнями на входах «АО», «А1», «А2».