Найти определитель онлайн с решением. Вычислить определитель матрицы онлайн. Основные определения и простейшие свойства

Равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е. , где i 0 – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i 0 .

Назначение сервиса . Данный сервис предназначен для нахождения определителя матрицы в онлайн режиме с оформлением всего хода решения в формате Word . Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите размерность матрицы, нажмите Далее. Вычислить определитель можно будет двумя способами: по определению и разложением по строке или столбцу . Если требуется найти определитель созданием нулей в одной из строк или столбцов, то можно использовать этот калькулятор .

Алгоритм нахождения определителя

  1. Для матриц порядка n=2 определитель вычисляется по формуле: Δ=a 11 *a 22 -a 12 *a 21
  2. Для матриц порядка n=3 определитель вычисляется через алгебраические дополнения или методом Саррюса .
  3. Матрица, имеющая размерность больше трех, раскладывается на алгебраические дополнения, для которых вычисляются свои определители (миноры). Например, определитель матрицы 4 порядка находится через разложение по строкам или столбцам (см. пример).
Для вычисления определителя, содержащего в матрице функции, применяются стандартные методы. Например, вычислить определитель матрицы 3 порядка:

Используем прием разложения по первой строке.
Δ = sin(x)× + 1× = 2sin(x)cos(x)-2cos(x) = sin(2x)-2cos(x)

Методы вычислений определителей

Нахождение определителя через алгебраические дополнения является распространенным методом. Его упрощенным вариантом является вычисление определителя правилом Саррюса . Однако при большой размерности матрицы, используют следующие методы:
  1. вычисление определителя методом понижения порядка
  2. вычисление определителя методом Гаусса (через приведение матрицы к треугольному виду).
В Excel для расчета определителя используется функция =МОПРЕД(диапазон ячеек) .

Прикладное использование определителей

Вычисляют определители, как правило, для конкретной системы, заданной в виде квадратной матрицы. Рассмотрим некоторые виды задач на нахождение определителя матрицы . Иногда требуется найти неизвестный параметр a , при котором определитель равнялся бы нулю. Для этого необходимо составить уравнение определителя (например, по правилу треугольников ) и, приравняв его к 0 , вычислить параметр a .
разложение по столбцам (по первому столбцу):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.
Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 .

Определим минор для (2,1): для этого вычеркиваем из матрицы вторую строку и первый столбец.

Найдем определитель для этого минора. ∆ 2,1 = (0 (-2)-2 (-2)) = 4 . Минор для (3,1): Вычеркиваем из матрицы 3-ю строку и 1-й столбец.
Найдем определитель для этого минора. ∆ 3,1 = (0 1-2 (-2)) = 4
Главный определитель равен: ∆ = (1 (-6)-3 4+1 4) = -14

Найдем определитель, использовав разложение по строкам (по первой строке):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.


Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 . Минор для (1,2): Вычеркиваем из матрицы 1-ю строку и 2-й столбец. Вычислим определитель для этого минора. ∆ 1,2 = (3 (-2)-1 1) = -7 . И чтобы найти минор для (1,3) вычеркиваем из матрицы первую строку и третий столбец. Найдем определитель для этого минора. ∆ 1,3 = (3 2-1 2) = 4
Находим главный определитель: ∆ = (1 (-6)-0 (-7)+(-2 4)) = -14

Понятие определителя является одним из основных в курсе линейной алгебры. Это понятие присуще ТОЛЬКО КВАДРАТНЫМ МАТРИЦАМ, этому понятию и посвящена данная статья. Здесь мы будем говорить об определителях матриц, элементами которых являются действительные (или комплексные) числа. В этом случае определитель есть действительное (или комплексное) число. Все дальнейшее изложение будет ответом на вопросы как вычислять определитель, и какими свойствами он обладает.

Сначала дадим определение определителя квадратной матрицы порядка n на n как сумму произведений перестановок элементов матрицы. На основании этого определения запишем формулы для вычисления определителей матриц первого, второго, третьего порядков и подробно разберем решения нескольких примеров.

Далее перейдем к свойствам определителя, которые будем формулировать в виде теорем без доказательства. Здесь будет получен метод вычисления определителя через его разложение по элементам какой-либо строки или столбца. Этот метод позволяет свести вычисление определителя матрицы порядка n на n к вычислению определителей матриц порядка 3 на 3 или меньшего. Обязательно покажем решения нескольких примеров.

В заключении остановимся на вычислении определителя методом Гаусса. Этот метод хорош при нахождении значений определителей матриц порядка выше 3 на 3 , так как требует меньших вычислительных усилий. Также разберем решение примеров.

Навигация по странице.

Определение определителя матрицы, вычисление определителя матрицы по определению.

Напомним несколько вспомогательных понятий.

Определение.

Перестановкой порядка n называется упорядоченный набор чисел, состоящий из n элементов.

Для множества, содержащего n элементов, существует n! (n факториал) перестановок порядка n . Перестановки отличаются друг от друга лишь порядком следования элементов.

Например, рассмотрим множество, состоящее из трех чисел: . Запишем все перестановки (всего их шесть, так как ):

Определение.

Инверсией в перестановке порядка n называется всякая пара индексов p и q , для которой p-ый элемент перестановки больше q-ого .

В предыдущем примере инверсией перестановки 4 , 9 , 7 является пара p=2 , q=3 , так как второй элемент перестановки равен 9 и он больше третьего, равного 7 . Инверсией перестановки 9 , 7 , 4 будут три пары: p=1 , q=2 (9>7 ); p=1 , q=3 (9>4 ) и p=2 , q=3 (7>4 ).

Нас будет больше интересовать количество инверсий в перестановке, а не сама инверсия.

Пусть - квадратная матрица порядка n на n над полем действительных (или комплексных) чисел. Пусть – множество всех перестановок порядка n множества . Множество содержит n! перестановок. Обозначим k–ую перестановку множества как , а количество инверсий в k-ой перестановке как .

Определение.

Определитель матрицы А есть число, равное .

Опишем эту формулу словами. Определителем квадратной матрицы порядка n на n является сумма, содержащая n! слагаемых. Каждое слагаемое представляет собой произведение n элементов матрицы, причем в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А . Перед k-ым слагаемым появляется коэффициент (-1) , если элементы матрицы А в произведении упорядочены по номеру строки, а количество инверсий в k-ой перестановке множества номеров столбцов нечетно.

Определитель матрицы А обычно обозначается как , также встречается обозначение det(A) . Также можно услышать, что определитель называют детерминантом.

Итак, .

Отсюда видно, что определителем матрицы первого порядка является элемент этой матрицы .

Вычисление определителя квадратной матрицы второго порядка - формула и пример.

порядка 2 на 2 в общем виде.

В этом случае n=2 , следовательно, n!=2!=2 .

.

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 2 на 2 , она имеет вид .

Пример.

порядка .

Решение.

В нашем примере . Применяем полученную формулу :

Вычисление определителя квадратной матрицы третьего порядка - формула и пример.

Найдем определитель квадратной матрицы порядка 3 на 3 в общем виде.

В этом случае n=3 , следовательно, n!=3!=6 .

Оформим в виде таблицы необходимые данные для применения формулы .

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 3 на 3 , она имеет вид

Аналогично можно получить формулы для вычисления определителей матриц порядка 4 на 4 , 5 на 5 и более высоких. Они будут иметь очень громоздкий вид.

Пример.

Вычислите определитель квадратной матрицы порядка 3 на 3 .

Решение.

В нашем примере

Применяем полученную формулу для вычисления определителя матрицы третьего порядка:

Формулы для вычисления определителей квадратных матриц второго и третьего порядков очень часто применяются, так что рекомендуем их запомнить.

Свойства определителя матрицы, вычисление определителя матрицы с использованием свойств.

На основании озвученного определения справедливы следующие свойства определителя матрицы .

    Определитель матрицы А равен определителю транспонированной матрицы А Т , то есть, .

    Пример.

    Убедитесь, что определитель матрицы равен определителю транспонированной матрицы.

    Решение.

    Воспользуемся формулой для вычисления определителя матрицы порядка 3 на 3 :

    Транспонируем матрицу А :

    Вычислим определитель транспонированной матрицы:

    Действительно, определитель транспонированной матрицы равен определителю исходной матрицы.

    Если в квадратной матрице все элементы хотя бы одной из строк (одного из столбцов) нулевые, определитель такой матрицы равен нулю.

    Пример.

    Проверьте, что определитель матрицы порядка 3 на 3 равен нулю.

    Решение.


    Действительно, определитель матрицы с нулевым столбцом равен нулю.

    Если переставить местами две любые строки (столбца) в квадратной матрице, то определитель полученной матрицы будет противоположен исходному (то есть, изменится знак).

    Пример.

    Даны две квадратные матрицы порядка 3 на 3 и . Покажите, что их определители противоположны.

    Решение.

    Матрица В получена из матрицы А заменой третьей строки на первую, а первой на третью. Согласно рассмотренному свойству определители таких матриц должны отличаться знаком. Проверим это, вычислив определители по известной формуле.

    Действительно, .

    Если в квадратной матрице хотя бы две строки (два столбца) одинаковы, то ее определитель равен нулю.

    Пример.

    Покажите, что определитель матрицы равен нулю.

    Решение.

    В данной матрице второй и третий столбцы одинаковы, так что согласно рассмотренному свойству ее определитель должен быть равен нулю. Проверим это.

    На самом деле определитель матрицы с двумя одинаковыми столбцами есть ноль.

    Если в квадратной матрице все элементы какой-либо строки (столбца) умножить на некоторое число k , то определитель полученной матицы будет равен определителю исходной матрицы, умноженному на k . Например,

    Пример.

    Докажите, что определитель матрицы равен утроенному определителю матрицы .

    Решение.

    Элементы первого столбца матрицы В получены из соответствующих элементов первого столбца матрицы А умножением на 3 . Тогда в силу рассмотренного свойства должно выполняться равенство . Проверим это, вычислив определители матриц А и В .

    Следовательно, , что и требовалось доказать.

    ОБРАТИТЕ ВНИМАНИЕ.

    Не путайте и не смешивайте понятия матрицы и определителя! Рассмотренное свойство определителя матрицы и операция умножения матрицы на число это далеко не одно и то же.
    , но .

    Если все элементы какой-либо строки (столбца) квадратной матрицы представляют собой сумму s слагаемых (s – натуральное число, большее единицы), то определитель такой матрицы будет равен сумме s определителей матриц, полученных из исходной, если в качестве элементов строки (столбца) оставить по одному слагаемому. Например,

    Пример.

    Докажите, что определитель матрицы равен сумме определителей матриц .

    Решение.

    В нашем примере , поэтому в силу рассмотренного свойства определителя матрицы должно выполняться равенство . Проверим его, вычислив соответствующие определители матриц порядка 2 на 2 по формуле .

    Из полученных результатов видно, что . На этом доказательство завершено.

    Если к элементам некоторой строки (столбца) матрицы прибавить соответствующие элементы другой строки (столбца), умноженные на произвольное число k , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Пример.

    Убедитесь, что если к элементам третьего столбца матрицы прибавить соответствующие элементы второго столбца этой матрицы, умноженные на (-2) , и прибавить соответствующие элементы первого столбца матрицы, умноженные на произвольное действительное число , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Решение.

    Если отталкиваться от рассмотренного свойства определителя, то определитель матрицы, полученной после всех указанных в задаче преобразований, будет равен определителю матрицы А .

    Сначала вычислим определитель исходной матрицы А :

    Теперь выполним необходимые преобразования матрицы А .

    Прибавим к элементам третьего столбца матрицы соответствующие элементы второго столбца матрицы, предварительно умножив их на (-2) . После этого матрица примет вид:

    К элементам третьего столбца полученной матрицы прибавим соответствующие элементы первого столбца, умноженные на :

    Вычислим определитель полученной матрицы и убедимся, что он равен определителю матрицы А , то есть, -24 :

    Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения .

    Здесь - алгебраическое дополнение элемента матрицы , .

    Это свойство позволяет вычислять определители матриц порядка выше чем 3 на 3 путем сведения их к сумме нескольких определителей матриц порядка на единицу ниже. Иными словами – это рекуррентная формула вычисления определителя квадратной матрицы любого порядка. Рекомендуем ее запомнить в силу достаточно частой применимости.

    Разберем несколько примеров.

    Пример.

    порядка 4 на 4 , разложив его

    • по элементам 3-ей строки,
    • по элементам 2-ого столбца.

    Решение.

    Используем формулу разложения определителя по элементам 3-ей строки

    Имеем

    Так задача нахождения определителя матрицы порядка 4 на 4 свелась к вычислению трех определителей матриц порядка 3 на 3 :

    Подставив полученные значения, приходим к результату:

    Используем формулу разложения определителя по элементам 2-ого столбца


    и действуем аналогично.

    Не будем подробно расписывать вычисление определителей матриц третьего порядка.

    Пример.

    Вычислите определитель матрицы порядка 4 на 4 .

    Решение.

    Можно разложить определитель матрицы по элементам любого столбца или любой строки, однако выгоднее выбирать строку или столбец, содержащую наибольшее количество нулевых элементов, так как это поможет избежать лишних вычислений. Разложим определитель по элементам первой строки:

    Вычислим полученные определители матриц порядка 3 на 3 по известной нам формуле:

    Подставляем результаты и получаем искомое значение

    Пример.

    Вычислите определитель матрицы порядка 5 на 5 .

    Решение.

    В четвертой строке матрицы наибольшее количество нулевых элементов среди всех строк и столбцов, поэтому целесообразно разложить определитель матрицы именно по элементам четвертой строки, так как в этом случае нам потребуется меньше вычислений.

    Полученные определители матриц порядка 4 на 4 были найдены в предыдущих примерах, так что воспользуемся готовыми результатами:

    Пример.

    Вычислите определитель матрицы порядка 7 на 7 .

    Решение.

    Не следует сразу бросаться раскладывать определитель по элементам какой либо строки или столбца. Если внимательно посмотреть на матрицу, то можно заметить, что элементы шестой строки матрицы можно получить умножением соответствующих элементов второй строки на двойку. То есть, если к элементам шестой строки прибавить соответствующие элементы второй строки, умноженные на (-2) , то определитель не изменится в силу седьмого свойства, а шестая строка полученной матрицы будет состоять из нулей. Определитель такой матрицы равен нулю по второму свойству.

    Ответ:

    Следует отметить, что рассмотренное свойство позволяет вычислить определители матриц любых порядков, однако приходится выполнять массу вычислительных операций. В большинстве случаев определитель матриц порядка выше третьего выгоднее находить методом Гаусса, который мы рассмотрим ниже.

    Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю.

    Пример.

    Покажите, что сумма произведений элементов третьего столбца матрицы на алгебраические дополнения соответствующих элементов первого столбца равна нулю.

    Решение.


    Определитель произведения квадратных матриц одного порядка равен произведению их определителей, то есть, , где m – натуральное число большее единицы, A k , k=1,2,…,m – квадратные матрицы одного порядка.

    Пример.

    Убедитесь, что определитель произведения двух матриц и равен произведению их определителей.

    Решение.

    Найдем сначала произведение определителей матриц А и В :

    Сейчас выполним умножение матриц и вычислим определитель получившейся матрицы:

    Таким образом, , что и требовалось показать.

Вычисление определителя матрицы методом Гаусса.

Опишем суть этого метода. Матрица А с помощью элементарных преобразований приводится к такому виду, чтобы в первом столбце все элементы, кроме стали нулевыми (это сделать всегда возможно, если определитель матрицы А отличен от нуля). Эту процедуру опишем чуть позже, а сейчас поясним, для чего это делается. Нулевые элементы получаются для того, чтобы получить самое простое разложение определителя по элементам первого столбца. После такого преобразования матрицы А , учитывая восьмое свойство и , получим

где - минор (n-1)-ого порядка , получающийся из матрицы А вычеркиванием элементов ее первой строки и первого столбца.

С матрицей, которой соответствует минор , проделывается такая же процедура получения нулевых элементов в первом столбце. И так далее до окончательного вычисления определителя.

Теперь осталось ответить на вопрос: «Как получать нулевые элементы в первом столбце»?

Опишем алгоритм действий.

Если , то к элементам первой строки матрицы прибавляются соответствующие элементы k-ой строки, в которой . (Если все без исключения элементы первого столбца матрицы А нулевые, то ее определитель равен нулю по второму свойству и не нужен никакой метод Гаусса). После такого преобразования «новый» элемент будет отличен от нуля. Определитель «новой» матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Теперь мы имеем матрицу, у которой . При к элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на . И так далее. В заключении к элементам n-ой строки прибавляем соответствующие элементы первой строки, умноженные на . Так будет получена преобразованная матрица А , все элементы первого столбца которой, кроме , будут нулевыми. Определитель полученной матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Разберем метод при решении примера, так будет понятнее.

Пример.

Вычислить определитель матрицы порядка 5 на 5 .

Решение.

Воспользуемся методом Гаусса. Преобразуем матрицу А так, чтобы все элементы ее первого столбца, кроме , стали нулевыми.

Так как изначально элемент , то прибавим к элементам первой строки матрицы соответствующие элементы, например, второй строки, так как :

Знак « ~ » означает эквивалентность.

Теперь прибавляем к элементам второй строки соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на , и аналогично действуем вплоть до шестой строки:

Получаем

С матрицей проводим ту же процедуру получения нулевых элементов в первом столбце:

Следовательно,

Сейчас выполняем преобразования с матрицей :

Замечание.

На некотором этапе преобразования матрицы по методу Гаусса может возникнуть ситуация, когда все элементы нескольких последних строк матрицы станут нулевыми. Это будет говорить о равенстве определителя нулю.

Подведем итог.

Определителем квадратной матрицы, элементы которой есть числа, является число. Мы рассмотрели три способа вычисления определителя:

  1. через сумму произведений сочетаний элементов матрицы;
  2. через разложение определителя по элементам строки или столбца матрицы;
  3. методом приведения матрицы к верхней треугольной (методом Гаусса).

Были получены формулы для вычисления определителей матриц порядка 2 на 2 и 3 на 3 .

Мы разобрали свойства определителя матрицы. Некоторые из них позволяют быстро понять, что определитель равен нулю.

При вычислении определителей матриц порядка выше 3 на 3 целесообразно использовать метод Гаусса: выполнить элементарные преобразования матрицы и привести ее к верхней треугольной. Определитель такой матрицы равен произведению всех элементов, стоящих на главной диагонали.

Постановка задачи

Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

Основные определения и простейшие свойства

Определитель

Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

Определитель квадратной матрицы будем обозначать или det .

Определение 1. Определителем квадратной матрицы второго порядка называется число .

Определителем квадратной матрицы порядка , называется число

где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

Пример. Пусть . Тогда

Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

Утверждение 11. Разложение определителя по произвольной строке.

Для определителя матрицы справедлива формула

Пример. Вычислите .

Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

Следствие. Определитель единичной матрицы равен единице, .

Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

причем . Для вычисления определителя матрицы используем разложение по первому столбцу

Так как , то

В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

Пример. Вычислите определитель матрицы .

Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

Определитель не меняется. В результате получаем

По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

К третьей строке прибавляем первую, умноженную на число :

В результате получаем

Ответ. .

Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

Обратная матрица

Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

Если определитель матрицы равен нулю, то обратная к ней не существует.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Утверждение. Если обратная матрица существует, то она единственна.

Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

Пример. .

Решение. Находим определитель

Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

Полученная матрица (2) и служит ответом к задаче.

Замечание. В предыдущем примере было бы точнее ответ записать так:
(3)

Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример. Найдите обратную матрицу для матрицы .

Решение. - существует.

Ответ: .

Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

Вычисление определителя и обратной матрицы с помощью метода Гаусса

Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

Именно, определитель матрицы равен det .

Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

Где есть j-тый столбец единичной матрицы , - искомый вектор.

Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

Формулы для определителя

1. Если матрица невырожденная, то и (произведение ведущих элементов).

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы . Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей , он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

Обозначения : Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два» :

ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:


Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим шесть нормальных способов для вычисления определителя

Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу .
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке .
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ . Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

Коль скоро выбран способ разложения определителя по первой строке , очевидно, что всё вращается вокруг неё:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Ну и третий элемент первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:

В следующем примере я раскрыл определитель по четвертому столбцу :

А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя .

БУДЬТЕ ВНИМАТЕЛЬНЫ!

В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали :

$$\left| \begin{array}{ll}{a_{11}} & {a_{12}} \\ {a_{21}} & {a_{22}}\end{array}\right|=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}$$

Пример

Задание. Вычислить определитель второго порядка $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|$

Решение. $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|=11 \cdot 5-(-2) \cdot 7=55+14=69$

Ответ. $\left| \begin{array}{rr}{11} & {-2} \\ {7} & {5}\end{array}\right|=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

$$\left| \begin{array}{ccc}{a_{11}} & {a_{12}} & {a_{13}} \\ {a_{21}} & {a_{22}} & {a_{23}} \\ {a_{31}} & {a_{32}} & {a_{33}}\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$$

$$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$$

Пример

Задание. Вычислить определитель $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|$ методом треугольников.

Решение. $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|=3 \cdot 1 \cdot(-2)+4 \cdot(-2) \cdot(-1)+$

$$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$

Ответ.

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

$$-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$$

Пример

Задание. Вычислить определитель $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|$ с помощью правила Саррюса.

Решение.

$$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$

Ответ. $\left| \begin{array}{rrr}{3} & {3} & {-1} \\ {4} & {1} & {3} \\ {1} & {-2} & {-2}\end{array}\right|=54$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения . Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|$

Решение. $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right| \leftarrow=a_{11} \cdot A_{11}+a_{12} \cdot A_{12}+a_{13} \cdot A_{13}=$

$1 \cdot(-1)^{1+1} \cdot \left| \begin{array}{cc}{5} & {6} \\ {8} & {9}\end{array}\right|+2 \cdot(-1)^{1+2} \cdot \left| \begin{array}{cc}{4} & {6} \\ {7} & {9}\end{array}\right|+3 \cdot(-1)^{1+3} \cdot \left| \begin{array}{cc}{4} & {5} \\ {7} & {8}\end{array}\right|=-3+12-9=0$

Ответ.

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|$

Решение. Выполним следующие преобразования над строками определителя : из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

$$\left| \begin{array}{ccc}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|=\left| \begin{array}{ccc}{1} & {2} & {3} \\ {4-4 \cdot 1} & {5-4 \cdot 2} & {6-4 \cdot 3} \\ {7-7 \cdot 1} & {8-7 \cdot 2} & {9-7 \cdot 3}\end{array}\right|=$$

$$=\left| \begin{array}{rrr}{1} & {2} & {3} \\ {0} & {-3} & {-6} \\ {0} & {-6} & {-12}\end{array}\right|=\left| \begin{array}{ccc}{1} & {2} & {3} \\ {0} & {-3} & {-6} \\ {0} & {2 \cdot(-3)} & {2 \cdot(-6)}\end{array}\right|=0$$

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ. $\left| \begin{array}{lll}{1} & {2} & {3} \\ {4} & {5} & {6} \\ {7} & {8} & {9}\end{array}\right|=0$

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель $\left| \begin{array}{llll}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя , сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

$$\left| \begin{array}{cccc}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|=\left| \begin{array}{cccc}{9-1} & {8-0} & {7-9} & {6-18} \\ {5-5} & {4-0} & {3-5} & {2-10} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|=\left| \begin{array}{rrrr}{0} & {8} & {-2} & {-12} \\ {0} & {4} & {-2} & {-8} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|$$

Полученный определитель разложим по элементам первого столбца:

$$\left| \begin{array}{rrrr}{0} & {8} & {-2} & {-12} \\ {0} & {4} & {-2} & {-8} \\ {1} & {0} & {1} & {2} \\ {0} & {4} & {2} & {0}\end{array}\right|=0+0+1 \cdot(-1)^{3+1} \cdot \left| \begin{array}{rrr}{8} & {-2} & {-12} \\ {4} & {-2} & {-8} \\ {4} & {2} & {0}\end{array}\right|+0$$

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

$$\left| \begin{array}{rrr}{8} & {-2} & {-12} \\ {4} & {-2} & {-8} \\ {4} & {2} & {0}\end{array}\right|=\left| \begin{array}{rrr}{0} & {2} & {4} \\ {4} & {-2} & {-8} \\ {0} & {4} & {8}\end{array}\right|=4 \cdot(-1)^{2+2} \cdot \left| \begin{array}{ll}{2} & {4} \\ {4} & {8}\end{array}\right|=$$

$$=4 \cdot(2 \cdot 8-4 \cdot 4)=0$$

Ответ. $\left| \begin{array}{cccc}{9} & {8} & {7} & {6} \\ {5} & {4} & {3} & {2} \\ {1} & {0} & {1} & {2} \\ {3} & {4} & {5} & {6}\end{array}\right|=0$

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя , равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель $\Delta=\left| \begin{array}{rrrr}{-2} & {1} & {3} & {2} \\ {3} & {0} & {-1} & {2} \\ {-5} & {2} & {3} & {0} \\ {4} & {-1} & {2} & {-3}\end{array}\right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_{11}$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

$$\Delta=\left| \begin{array}{rrrr}{-2} & {1} & {3} & {2} \\ {3} & {0} & {-1} & {2} \\ {-5} & {2} & {3} & {0} \\ {4} & {-1} & {2} & {-3}\end{array}\right|=-\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {3} & {-1} & {2} \\ {2} & {-5} & {3} & {0} \\ {-1} & {4} & {2} & {-3}\end{array}\right|$$

$$\Delta=-\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {3} & {-1} & {2} \\ {0} & {-1} & {-3} & {-4} \\ {0} & {2} & {5} & {-1}\end{array}\right|$$

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

$$\Delta=\left| \begin{array}{rrrr}{1} & {-2} & {3} & {2} \\ {0} & {-1} & {-3} & {-4} \\ {0} & {3} & {-1} & {2} \\ {0} & {2} & {5} & {-1}\end{array}\right|$$